A symbiotic plant peroxidase involved in bacterial invasion of the tropical legume Sesbania rostrata.

نویسندگان

  • Jeroen Den Herder
  • Sam Lievens
  • Stephane Rombauts
  • Marcelle Holsters
  • Sofie Goormachtig
چکیده

Aquatic nodulation on the tropical legume Sesbania rostrata occurs at lateral root bases via intercellular crack-entry invasion. A gene was identified (Srprx1) that is transiently up-regulated during the nodulation process and codes for a functional class III plant peroxidase. The expression strictly depended on bacterial nodulation factors (NFs) and could be modulated by hydrogen peroxide, a downstream signal for crack-entry invasion. Expression was not induced after wounding or pathogen attack, indicating that the peroxidase is a symbiosis-specific isoform. In situ hybridization showed Srprx1 transcripts around bacterial infection pockets and infection threads until they reached the central tissue of the nodule. A root nodule extensin (SrRNE1) colocalized with Srprx1 both in time and space and had the same NF requirement, suggesting a function in a similar process. Finally, in mixed inoculation nodules that were invaded by NF-deficient bacteria and differed in infection thread progression, infection-associated peroxidase transcripts were not observed. Lack of Srprx1 gene expression could be one of the causes for the aberrant structure of the infection threads.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata.

Nodulation factor (NF) signal transduction in the legume-rhizobium symbiosis involves calcium oscillations that are instrumental in eliciting nodulation. To date, Ca2+ spiking has been studied exclusively in the intracellular bacterial invasion of growing root hairs in zone I. This mechanism is not the only one by which rhizobia gain entry into their hosts; the tropical legume Sesbania rostrata...

متن کامل

Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation.

Rhizobia colonize their legume hosts by different modes of entry while initiating symbiotic nitrogen fixation. Most legumes are invaded via growing root hairs by the root hair-curl mechanism, which involves epidermal cell responses. However, invasion of a number of tropical legumes happens through fissures at lateral root bases by cortical, intercellular crack entry. In the semiaquatic Sesbania...

متن کامل

Comparative transcriptome analysis reveals common and specific tags for root hair and crack-entry invasion in Sesbania rostrata.

The tropical legume Sesbania rostrata provides its microsymbiont Azorhizobium caulinodans with versatile invasion strategies to allow nodule formation in temporarily flooded habitats. In aerated soils, the bacteria enter via the root hair curling mechanism. Submergence prevents this epidermal invasion by accumulation of inhibiting concentrations of ethylene and, under these conditions, the bact...

متن کامل

A Chemotaxis Receptor Modulates Nodulation during the Azorhizobium caulinodans-Sesbania rostrata Symbiosis.

UNLABELLED Azorhizobium caulinodans ORS571 is a free-living nitrogen-fixing bacterium which can induce nitrogen-fixing nodules both on the root and the stem of its legume host Sesbania rostrata This bacterium, which is an obligate aerobe that moves by means of a polar flagellum, possesses a single chemotaxis signal transduction pathway. The objective of this work was to examine the role that ch...

متن کامل

Azorhizobium caulinodans Transmembrane Chemoreceptor TlpA1 Involved in Host Colonization and Nodulation on Roots and Stems

Azorhizobium caulinodans ORS571 is a motile soil bacterium that interacts symbiotically with legume host Sesbania rostrata, forming nitrogen-fixing root and stem nodules. Bacterial chemotaxis plays an important role in establishing this symbiotic relationship. To determine the contribution of chemotaxis to symbiosis in A. caulinodans ORS571-S. rostrata, we characterized the function of TlpA1 (t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 144 2  شماره 

صفحات  -

تاریخ انتشار 2007